Solar System Launcf

One astronomic al unit is about 92,960,000 miles, the average distance betweenthe \mathcal{S} un and Earth. Because this is hard to imagine, any standard unit of measure, such as centimeters, inches, feet or meters may be used to represent astronomicalunits in order to showrelative scale of the Solar System.

Planet \#	Solar System Lineup	Ulnits	\# of Centimeters
1	Mercury	0.4	
2	Venus	0.7	
3	Earth	1.0	
4	Mars	1.5	
5	Asteroid Belt	in between	
6	Supiter	5.2	
7	Saturn	9.5	
8	Neanus	19.2	
9	Neptune	30.1	
Sluto	39.4		

In this activity, 0.1 units $=1$ centimeter

Each team of students will need:

- measuring tools - centimeter cubes, base ten blocks, rulers in centimeters, etc
- several black construction paper strips (1^{\prime} wide $X 18^{\prime \prime}$ length)
- $\quad 1$ set of Solar System stickers (use stars or glitter to represent the asteroid belt)
- scotch tape
- 2 paper straw rockets (previously made)

Directions for Solar System Launch

1. Fill in the chart above with the \# of centimeters needed to measure distances.
2. Tape 2 blackstrips end-to-end. (Add more as needed)
3. Beginning with the top of one of the taped strips, attach a Sun sticker.
4. Measure from the center of the Sun to the center of Planet \# 1. Add sticker.
5. Me asure from the center of the Sun to the center of Planet \# 2. Add sticker.
6. Continue this process until all distances are me as ured and stickers attached.
7. Line up your Solar System strip with the others created by your classmates.
8. Checkyour team's measurements with your classmates. Were you close?
9. S tand on a markchosen by your te acher and launch your rocket.
10. Using the computer and the Solar System Launch Bar Graph, record where your rocket landed by placing a " 1 " in the row with your name and in the "Planet Column" closest to your rocket.

Creating the Planet Bar Graph in Microsoft Excel

1. Open Excel.
2. In column A, enter the student names.
a. Under the last student, enter a row for total.

	A
1	
2	
$\mathbf{3}$	
4	
5	John Doe
6	Mary Jane
7	Billy Bob
7	亿
8	

3. Add the planet names.

3		M	V	E	M	J	J S	S	U	N	P
4	John Doe	亿									
5	Mary Jane										
6	Billy Bob										
7											
8											

4. Add the formulas to make Excel add the number of students that landed on a given planet.
a. Click in the first available cell in the column below all of the student names.

5	Mary Jane		
6	Billy Bob		
7	Total	\square	
8			

b. Type in the formula as follows $=\operatorname{sum}(\mathbf{b 4}: \mathbf{b 6})$.
c. Note that the number may be different for your formula depending on the number of students in your group. My student names were in rows 4 through 6 . If your students were in rows 4 through 25, then your formula would look like $=\operatorname{sum}(\mathbf{b 4}: \mathbf{b 2 5})$.
d. Continue adding formulas at the end of each column for each of the planets.
e. Note: A zero will appear in the column until the students have entered some data.
5. Add the bar graph on the same screen.
a. Highlight the entire chart area.
b. Click on the chart wizard on the toolbar.
c. Select column and click next.
d. Select the series in rows button.
e. Select the series tab.

f. Under the series box, remove all of the series except TOTAL.
g. Click next.

h. Label the chart--Rocket Distance, x-axis-Planets, and y-axis-number of landings.
i. Click next.
j. Select As object in button.
k. Click finish.

6. You can move the chart around by clicking and dragging it to the desired location.

